Strip-pilot Data Output: LVDS or Optical?

- LVDS pros
 - less size, power, complexity on pilot
 - » (LVDS driver) vs (serializer + optical driver)
 - LVDS drivers rad-tolerant to 50kRad
 - » Serializers needed for optical solution
 - unknown rad-tolerance
- LVDS cons
 - Ground loop?

Optical Daughter Card

- We started work on daughter card that could either
 - Transmit data from FEM to DCM, or from pilot to FEM
 - Make it general for use in all PHENIX upgrades

Optical Daughter Card

- In FEM, less constraints size, rad-hardness
- Serializer options
 - Depends on encoding 8B/10B or CIMT, Chi?
 - TLK1501 (8B/10B), GLINK 3.3V (CIMT)
- Optical drivers, many, Agilent HFBR-5912

Schedule

- Design complete end of September
- Test board back by mid-October
- Goal
 - complete this simple task,
 - work with Vince/Chi to see if we can help on other parts of the system

backup

Strip Requirements (TVC March 04)

- Two readout cards (ROC) per sensor
 - Each ROC has 6 SVX4 + FPGA / ASIC
 - 8 ROCs per ladder
 - 48 svx4 per ladder
- Volume per SVX4
 - Each hit = 16 bit word
 - 1 header
 - Total words/svx4 = 1+(num hits) = 1+(occ*128)
- Volume per ladder
 - Total words/ladder = 48+(occ*6144)
- Time = (48+(occ*6144))/40 MHz
 - < 40 microsec if occ < 25%</p>
- Serialize each 16 bit word at 40 MHz